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Front interaction on a ring electrode
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Recent electrochemical experiments and simulations by Krischer and co-workers on a ring electrode reveal
a unique transition mechanism for a bistable reduction reaction. The front boundaries of a localized pulse of
higher potential are seen to accelerate around the ring to induce a very rapid transition. We show here that the
accelerated transition is due to attractive front interaction across the pulse initially and around the ring in the
final stage. Using coherent structure theory, we quantitatively correlate this interaction-induced acceleration to
the dimensions of the electrodes. We also predict a critical width of the initial pulse below which the pulse will
shrink and the transition is preventd$1063-651X98)15305-9

PACS numbd(s): 82.40.Ck, 47.54tr, 82.45+z

I. INTRODUCTION niscent of bistable reaction-diffusion systems are found in a

The reduction rate of a neqative ion at a workin eIeC_series of experiments and simulations carried out by Krischer
9 9 and her co-worker§g3,4].

trode has a nonmonotonic dependence on the electrode po- Krischer's working electrode is an Ag ring electrode for
tential since an increase in potential can both repel the N€Y3re reduction of §Dz— The width of the ring electrode is
8 .

tive ion (hence decrease the re_actlon }.aﬂed en_hance the much smaller than the circumferenteand the separation
electron transfer ratgl]. When this reaction rate is balanced from the reference electrode. Consequently, both the ra-

against the net current imposed by a constant potential drog,| \ariation across the width and the ring curvature can be
across the electrodes, a bistable sy;tem can resylt with itted such that the potential on the electrode is pseudo-
stable homogeneous states—an active one with higher potegpe-dimensional. The electrode is originally in the passive
tial and a passive one. Due to the nonmonotonic dependenggymogeneous state and a localized pulse of higher potential
of the reaction rate on the potential in this bistable region angs then introduced by a microprobe. The boundaries of the
due to the lower potential drop across the electrolyte, thgulse are observed to evolve into fronts separating the active
“active” state with a higher potential actually yields a lower region within the pulse from the passive surrounding. The
current across the electrode. fronts then expand until they meet on the other side of the
If a few layers of water molecules are packed against theing such that the entire electrode is in the active state.
electrodes, as is commonly believed to be the case near the It is in the propagation of these fronts where front dynam-
electrodes, some electrons and ions are spent charging tigs different from one-dimensional diffusion-reaction fronts
resulting “double-layer” capacitor instead of undergoing theare observed by Kirscher's group. As seen in their simula-
electron-transfer reduction reaction. The two processes atns [4] shown in Figs. 1 and 2, whemw(L) is small, the
often modeled as a capacitor in parallel with a non-Ohmidronts propagate at constant speed around the ring as the
resistor representing the reaction. Due to the large capacéctive state replaces the passive one. The total current is also
tance of this molecular-level double layer, its charging dy-seen to drop linearly in time as seen in Fig. 2, reflecting the
namics is often slow and observable compared to the timeonstancy of the speeds of the fronts. This is the expected
scale for ion transport to and across the double layer anbehavior for the front of a one-dimensional bistable reaction-
electron transfer during the reduction reaction. In fact, thigiffusion system. However, when the reference electrode is
slow dynamics has been shown to be coupled with thenoved further away, such thatv(L) is of unit order or
bistable kinetics to yield nontrivial dynamics such as hysterdarger, the front and the current evolution clearly shows non-
esis and excitability, as well as complex nonlinear dynamicdinear behavior in Figs. 1 and 2. The fronts seem to acceler-
near high-order dynamic singularities like Takens-Bogdanowate across the ring such that the active state replaces the
[2]. If, in addition, a reference electrode can be placed sufpassive one in a rapid transition. Moreover, as shown in
ficiently close to the working electrode, spatial gradient inFig. 1(d), when (/L) is much larger than unity, the pulse
the potential can be introduced in the tangential directioractually extinguishes as its fronts collapse into each other
along the electrode. The spatial gradient is introduced by thastead of expanding. The subsequent homogeneous “igni-
finite and constant conductivity in the neutral electrolyte betion” to the active state is because the simulation was done
tween the electrodes and the potential there satisfies thender conditions of a single active staixcitablg system
three-dimensional Laplace equation. The reaction, on théstead of a true bistable system. Nevertheless, the extinction
other hand, occurs on the working electrode surface onlyof the initial pulse is unmistakable and would also have oc-
Nevertheless, one expects that, in the limit when the eleceurred in a bistable system.
trode separation vanishes, the bistable kinetics can couple Accelerated fronts and extinction of a pulse are typically
with the bulk potential gradient to introduce complex spa-associated with a two-dimensional reaction-diffusion system
tiotemporal patterns on the electrode, as in other reactionshose spatiotemporal dynamics is far richer than the one-
diffusion systems with similar kinetics. Indeed, fronts remi- dimensional casg5]. That the same phenomena can appear
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FIG. 1. Comparison of the 2D and 1D theories: 2D simulation
[2], 1D simulation. Coherent structure theory: the front evolution.
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FIG. 2. Comparison of the 2D and 1D theories: 2D simulation
[2], 1D simulation. Coherent structure theory: the total current vs
time.

diffusion equation. It was believed that enhanced flux in the
limit (w/L)>1 cannot be modeled as one-dimensional dif-
fusion and hence the accelerated fronts are a two-
dimensional effect.

We show here that both the accelerated front and pulse
extinction phenomena can still exist for a one-dimensional
diffusion-reaction system in a periodic domain like the ring
electrode. As a result, while nontrivial dynamics are still pos-
sible, they are not as rich as a truly two-dimensional one.
Both phenomena are due to long-range interaction of the two
fronts through the bulk electrolyte, which can often be mod-
eled as one-dimensional diffusive coupling even far'l()
of unit order. The accelerated front phenomenon is due both
to initial interaction across the pulse when it is narrow and
final-stage interaction around the ring when the pulse is
wide. The extinction phenomenon, however, is only due to
the former interaction.

Il. EFFECTIVE ONE-DIMENSIONAL DIFFUSION
COEFFICIENT

We begin by neglecting the potential variationrinthe
ring curvature, and the finite circumference of the ring. The

in a pseudo-one-dimensional system hence suggests irelectrolyte between the electrodes is confined to an infinite

other complex dynamics are possible on the ring electrode

strip with boundary conditiong=0 at the reference elec-

The curious accelerated front dynamics has been attrigfode at the plang=w and #=V—u(x) at the plane=0

uted to the *“global coupling” effect representing higher
coupling between different points on the ring electrode as th
electrode separation increaddd. The argument is that the

increased gap distorts equipotential lines between the ele
trodes from a linear topology in a thin gap to fully curved
ones in a wide one. As a result, the potential gradient alon
the ring is amplified in the latter case which, in turn, en-

corresponding to the outside surface of the double layer on
the working electrode. The total applied voltageMsand
u(x) is the potential drop at the double layer. The potential
within the strip is governed by the two-dimensional Laplace
equation and we hence use the conformal mapn)
+(e™" cosmziw,e™" sin wzZ/w) to map the strip into the
%alf—planeypo with boundary conditiong=0 for £&<0 and

hances the flux of the higher potential to the lower-potentialb=Y —u(x) for £>0 at the boundary;=0. Using the Pois-

passive region via the bulk electrolyte. In the limit of

(w/L)<1, the flux through the electrolyte has been shown to

produce a net diffusive flux along the electrodg. It can

hence be modeled as a pseudo-one-dimensional reaction-

son formula, one gets

- (X,Z):

+ o
P Lo G(p,2)[V-u(x+p)Jdp
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or, breaking the integral by taking into account the periodic<(2) at =o. Hence, only the correctek=0 term needs to be

ity of u(x), as included. The one-dimensional approximati@) hence re-
N mains validiwhen corrected diffusion coefficie(®) is used
dp B +L/2 even for w/L) close to unity where the simulation of Ma-
9z (X’Z)_k;_x L G(p+kL,2)[V-u(x+p)]dp, zous and Krischer in Figs.() and Xc) clearly show front

(1) acceleration. This phenomenon should hence be capturable
with a one-dimensional diffusion-reaction equation. Our es-
wherek is a integer and the Green’s function is timate ofD/D., from Eq.(4) yields 1.0, 0.99, 0.55, and 0.29
— ol 2 for (w/L)=0.0477, 0.477, 1.5957, and 15.957 of Fig. 1. The
1 e™¥tar mz/w—(1—e™")] validity of long-wave expansion even fow(L) of unit order
m cog wz/w[tarf mz/w+(1—e™")2]2 is due to the strong 2 singularity atp=0 whenz tends to
(2)  zero. This renders Eq3) as a converging series even for
L u(x) with relatively high gradients. Moreover, the diffusivity
which is singular as botp andz approach zerdG(p,z) — actually decreases as one fixgsand decreasels (increase

—p~° asz—0. This sharp singularity go=0 allows us to L . . i
estimate the flux at the electrode, which is directly propor-W/L)’ which is inconsistent with the speculation that global

tional to d¢p/ 9z at z=0, by expanding the kernel in convo- coupling increases with decreasing
lution (1). We hence expand abopt=0

G(p,2)=

I1l. ONE-DIMENSIONAL REACTION-DIFFUSION
du 1 d?u EQUATION

U(X+p)=u(x)+ - p+ 5 7= p?+K 3
(x+p)=u(x) dx P 2 dx® P ® To scrutinize the accelerating front phenomenon more

) . . closely, we include Eq4) with the general diffusivity of Eq.
and assume thai(x) is sufficiently smooth such that its (s5) in 3 charge balance across the parallel circuit of the non-

derivatives become successively smaller and the expansiQipmic reaction resistor and the double-layer capacitance,
converges neagp=0. From contour integration, we can find

the first few moments of the kernéfor the case /L) Cu=—-r(u)+o' ¢,(z=0),

—0, when only the term witkk=0 survives:
whered”’ is a conductivity in the bulk electrolyte ar@is the

e _ . Hee _ double-layer capacitance. The following transformations:
f_w Glp.zydp=—1w, lim | pG(p.2)dP=0,  (\ Ay (Lx/2mw2), t—(CRTNF)ret, u—(RTNFu, V
—(RT/INF)V, 0—(RT/IronF)o’, andi=r/(rynF) yield

lim
z—0

to 2w .
lim pZG(p,z)dpz—?. U= —i(u)+(a/w)[V—u+Duy,] (6)
z—0J —*
wherer is a typical reaction rate is the charge number of

As a result, provided the spatial gradientwfs not ex- the ion,F is the Faraday constant, ailib=Dw(2#/L).
cessively sharp, the surface flux in the original unscaled co- The dependence of thez(ﬁ’ reduction reaction on the
ordinate system can be approximated[fiy the case when potential has been fitted empiricalf¢] to yield a reaction

(w/L)—0] current of i =0.036%°+17.2312+2019.61. The reported
) value of the third coefficient 2019.6 by Mazouz and Krischer
% _ V_U(X)_ d_U 4) is actually 2039.6 but such a coefficient yields an excitable
Jz Z:O_ w zdx?’ system instead of bistability and we have altered it to 2019.6

here. The initial pulse width for simulation is always fixed at
where the “effective diffusivity” in units of length is given 0.2 in the scalea coordinate in Eq(6). In the simulations of
by D..=w/3, the “long-wave limit" obtained by Mazouz Mazouz and Krischer of the full two-dimensional problem

and Krischer4]. shown in Fig. 1 and 23/w andV are held constant at 10 and
This effective one-dimensional diffusivity applies when- —350, respectively. We have simulated H&) with the
ever the domain op is sufficiently large andi(x) is suffi-  same coefficients and, as shown in the Figs. 1 and 2, have

ciently smooth. The latter is trivially satisfied except duringobtained front profiles and current evolution curves that are
the initial transients when the imposed pulse has stepquantitatively consistent with the two-dimensional simula-
function boundaries. The former is valid only if the circum- tion. The only error arises during the initial phase when the
ference is sufficiently large comparedwo To estimate how pulse has a large gradient. Our estimated diffusivibeare
finite circumference distorts our diffusivity, we again retain probably too low during this interval. Fortunately, this tran-

the term withk=0 in Eq. (1) to obtain sient for front formation is rather rapid and does not affect
the later front acceleration dynamics.
+L/2 +oo ; ; ; ; ;
. . Sinceo/w is constant during these simulations, we note
— 2 2 )
D Dx(i‘ﬂf 2 P G(p,z)dp/ lm Cw P G(p,z)dp) that this does not correspond to real experimental conditions

wherew is varied and, thereforey/w cannot be constant. If
®) one envisions a fictional experiment where the ring circum-
and find thatD only deviates significantly from®, if (w/L) ferenceL is varied whilew is constant, then the simulations
is in excess of unity. Alk+0 terms are exponentially small in Fig. 1 correspond to a different initial width with Fig(a)
because of the exp |p|] dependence of the Green’s function having a larger width. This suggests that the acceleration is
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not present in that figure not because the diffusivity is small 2 : : ' ' ' ' ' ' '
(it is, in fact, the largest possiblédout because the initial
width is too large for front interaction to take place. In the
actual experiment wheh is fixed andw is varied, the
bistable system yields an excitable system with a unique ho- °|
mogeneous state at larg¢L and the evolution should re-
semble Fig. td). However, for intermediate values wof/L,
the degree of front acceleration is determined not by global _
coupling but by the width of the reaction front relative to the
initial and the final front separation. The front width is thena |
complex function ofw/L and it is not clear that acceleration

1

always increases wittv/L. b
To demonstrate this, we rewrite Eq6) as a one-

parameter diffusion-reaction system w3 \

!

vy

U,=Ug—u(u—1)(u+a), (7) I . . . . . . : . .
-5 -4 -3 -2 -1 0 1 2 3 4 5

where 7=ta(s;—s,)?, é=x(a(s,—s;)/D)¥?  and 3

a=0.0365. For the standard conditions in Fig. &= o . ,
(—257.83-212.47—1.75) are the three roots of the poly- FIG. 3. Solid line, foward _stepplqg_ from_l_ ; dasht_ed line, neu-
nomial i (u) + (o/w)(V—u). Hence, the key parameteris tral modedu_ /d¢; dash-dot line, adjoint eigenfunctiap._ .
(s3—S,)/(s,—51)=4.645 for the specified conditions. The

circumference is now of lengtha(s,—s;)/D)¥2 Since du,/d¢, the coefficient of expansion isme,) if ¢, is

all the conditions in Fig. 1 correspond to the same value ohormalized such thatg, ,du, /d§)=1 and the inner prod-

a, the only change is in the circumference length. Front in-uct is defined asf(g) =/ fgdé¢ in the moving frame. Using
teraction is hence expected whenever the front width, whict shooting scheme described[81, we have constructed the
has been scaled to unity here, is smaller tham(&s, adjoint eigenfunctione, . For the standard conditions of
—s,)/D)Y2. For w/L less than unity, this corresponds to @=4.645, the computed neutral eigenfunctions are shown in
0.74(L/w)>1, which is always satisfied. Even at/L Fig. 3. The most pertinent parts of this eigenfunction are its
=1.5957 of case, the condition is just barely violated and decay rates toward the active and passive parts of the front.

one may still be able to describe the acceleration rate througHsing the forward-stepping frontu( ) located até=0 as a
front interaction. reference, these can be represented as

IV. REACTION FRONT AND SPECTRUM lim ¢_=68,e" V2ag lim ¢_= S eV

The two front solution to Eq(7) can be readily obtained Eote fo—

by inspection,
. Due to obvious symmetries between., the adjoint
U, =3{1—a*x(1+a)tani(1+a)(é—c. 7)/2\2]}, eigenfunction foru, would simply be the mirror image of
® u_. we depict our computed (5, =856_=— & within nu-

with speedc. = t(a—l)/\/i. merical accuracyin Fig. 4.

Transforming Eq(7) into a moving coordinate with the
speedc, of a particular frontu, and linearizing about that
front, one obtains the disturbance equatién/dr=Lv,
where L=9%/3¢%+c, dldé—e and e=3u2+2(a—1)u,
— a. Perturbation about the constant-speed front, such as tt .|
observed acceleration, is determined by the spectruin. of
This spectrum contains both discrete and essential sgégtra st
the corresponding eigenfunctions of which approach zer
and bounded oscillations, respectively, at the two infinities«e 2f
Judging from the simulations, the front is stable and botF
spectra lie in the left half of the complex plane. There is, 1sf
however, a neutral mode that arises from the translatione
symmetry—EQq.(7) in the moving coordinate is invariant to "
E— &+ &y and translations of the front8) are still front
solutions. A simple differentiation of Eq7) in the moving 051
frame shows that (du, /d&§)=0 and the eigenfunction of v
this discrete neutral mode @vu,, /dé. o o5 1 1s 2 25 8 s 4 45 >

The adjoint eigenvalue problem defined by = %/ 9&2
—c,d/dé—e also has a neutral discrete mode with eigen- FIG. 4. Dependence of front interaction parameten the sys-
function ¢, . Hence, if we expand the disturbancewfin  tem parametet.
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FIG. 5. Dependence of critical distandg on the parameter of d>d. dy<d,
systema.
FIG. 6. 1D numerical simulations for the case-4.5645,d,
V. COHERENT STRUCTURE THEORY =1.01d,, andd,=0.99 (d.=0.83).

Since the dominant neutral mode corresponds to a trans- : . . .
: e For long-range interaction, the intervals for inner products
lation, when two fronts are placed sufficiently close that theyinvolve overlapping exponential terms of the form
feel the presence of each other and not too close to destray bppIng exp
the front structure, the resulting interaction would cause both
' . o . u ~—at(l+ta)exyf— (1+a)él\2},
fronts to translate. Consider the initial interaction immedi- +(8) at(lt e~ (1+a)¢ \/—}
ately after the fronts are established, we seek the interactio

force on each front at any given moment in time. Let the left

0_(&)~ — a+(1+ a)exg — (1+a)(d—£)/y2}, and f~

front u_ be located at=0 at this moment. Any interaction —(2+8a)(1+a)? exp{— (1+a)d/2}.
would translate this front to a new positigh (t) and the
translation is simplyu_(£— £_(t)). An expansion for small One then obtains

&_(t) yieldsu_~u_(&)—&_(t)du_/d¢ and we see the co- . _
efficient of the neutral eigenfunction has a simple physical ~ d~2C,—(48/y2a)(1+4a)(1+ a)%e” 1+ 42 (10)
interpretation—the position of the front. Similarly, the right
front situated at the distanag to the right ofu_ can be for d>1. _ _
written asu, ~u. (&) — £, (t)du, /dé&. The constant term@, corresponds to two noninteracting
At any instance in time, the entire pulse can be written ad"onts that propagate in opposite direction while the expo-
nentially decaying second term represents the initial attrac-
U~U_(E— & (D)+U (E— £, () +a. tive interaction between the two fro_nts. Fro_nt acceleration is
actually due to an attractive front interaction that prevents
the fronts from moving at their normal speeds.
At the end of the translation when the pulse width ap-
proaches the ring circumference, the fronts interact now on
the other side and a similar analysis yields

Upon substituting this expression into E), one obtains

—E UL (E—E)—E U (E-E)

=Celum (€ &) (e, d~2c. +(46/\2)(4+ a)(1+ a)2e~ (1 a(L-di2

where (12)
wherelL is the rescaled circumference of the ring. The inter-
(&) =[u(§=& ) +allu-(§-&-)+all8u.(6-¢-) action is again attractive but now the fronts accelerate toward

+3u_(¢—&)—2a-2]. each other, instead of being bound during the initial attrac-
tive interaction.

Taking inner product with respect to the adjoipt to
isolate each front, one obtains two equationsgorand&_ . VI. INTERACTION DYNAMICS AND CRITICAL PULSE
Subtracting the two equations, a single evolution equation WIDTH

for d results: In Figs. 1 and 2 we compare the front acceleration dy-

namics predicted by Eqg10) and (11) to those from the

d=g (d a)=§ _'g —2c. — 2(f1,¢-) _ initial two-dimensional simulations of Mazouz and Krisher
0= e To1-[ul(6-d),o_] and one-dimensional simulation using E&). Except for

9 cased when the front width is much larger then the circum-
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ference and hence the fronts are never established, the simpileh if there are multiple pulsef7] and if the exponential
coherent structure theory yields excellent agreement. Themails can be made to oscillafé]. While their spatiotemporal
is almost no interaction for casg the initial and final inter-  dynamics are not as rich as truly two-dimensional problems,
actions governed by Eqg10) and (11), respectively, are the statistics of multifront coalescence has been studied theo-

clearly evident in casb while they tend to overlap in case  retically [7] and ring electrode experiments can corroborate
The theory also predicts the critical width for the initial  theoretical predictions.

pulse defined by;(d.,a)=0 shown in Fig. 5. Pulses with
initial widths smaller thand, would extinguish instead of
expanding. This is clearly corroborated by the one-
dimensional simulation shown in Fig. 6.

Although the accelerated front dynamics and extinction This work was supported by NSF Grant NOS. CTS95-
phenomena are shown to be driven mostly by one22277 and ECS97-06873. We are grateful to K. Krischer for
dimensional front interaction, its dynamics can still be verybringing this problem to our attention and for her input.
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