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Front interaction on a ring electrode

Oleksiy Orlychenko, Yi Ye, and Hsueh-Chia Chang
Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556

~Received 2 December 1997!

Recent electrochemical experiments and simulations by Krischer and co-workers on a ring electrode reveal
a unique transition mechanism for a bistable reduction reaction. The front boundaries of a localized pulse of
higher potential are seen to accelerate around the ring to induce a very rapid transition. We show here that the
accelerated transition is due to attractive front interaction across the pulse initially and around the ring in the
final stage. Using coherent structure theory, we quantitatively correlate this interaction-induced acceleration to
the dimensions of the electrodes. We also predict a critical width of the initial pulse below which the pulse will
shrink and the transition is prevented.@S1063-651X~98!15305-9#

PACS number~s!: 82.40.Ck, 47.54.1r, 82.45.1z
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I. INTRODUCTION

The reduction rate of a negative ion at a working ele
trode has a nonmonotonic dependence on the electrode
tential since an increase in potential can both repel the n
tive ion ~hence decrease the reaction rate! and enhance the
electron transfer rate@1#. When this reaction rate is balance
against the net current imposed by a constant potential d
across the electrodes, a bistable system can result with
stable homogeneous states—an active one with higher po
tial and a passive one. Due to the nonmonotonic depend
of the reaction rate on the potential in this bistable region
due to the lower potential drop across the electrolyte,
‘‘active’’ state with a higher potential actually yields a lowe
current across the electrode.

If a few layers of water molecules are packed against
electrodes, as is commonly believed to be the case nea
electrodes, some electrons and ions are spent charging
resulting ‘‘double-layer’’ capacitor instead of undergoing t
electron-transfer reduction reaction. The two processes
often modeled as a capacitor in parallel with a non-Ohm
resistor representing the reaction. Due to the large cap
tance of this molecular-level double layer, its charging d
namics is often slow and observable compared to the t
scale for ion transport to and across the double layer
electron transfer during the reduction reaction. In fact, t
slow dynamics has been shown to be coupled with
bistable kinetics to yield nontrivial dynamics such as hyst
esis and excitability, as well as complex nonlinear dynam
near high-order dynamic singularities like Takens-Bogdan
@2#. If, in addition, a reference electrode can be placed s
ficiently close to the working electrode, spatial gradient
the potential can be introduced in the tangential direct
along the electrode. The spatial gradient is introduced by
finite and constant conductivity in the neutral electrolyte b
tween the electrodes and the potential there satisfies
three-dimensional Laplace equation. The reaction, on
other hand, occurs on the working electrode surface o
Nevertheless, one expects that, in the limit when the e
trode separation vanishes, the bistable kinetics can co
with the bulk potential gradient to introduce complex sp
tiotemporal patterns on the electrode, as in other react
diffusion systems with similar kinetics. Indeed, fronts rem
571063-651X/98/57~5!/5196~6!/$15.00
-
o-
a-

op
o
n-
ce
d
e

e
the
the

re
c
ci-
-
e
d

s
e
-
s
v
f-

n
e
-
he
e

y.
c-
le

-
n-

niscent of bistable reaction-diffusion systems are found i
series of experiments and simulations carried out by Krisc
and her co-workers@3,4#.

Krischer’s working electrode is an Ag ring electrode f
the reduction of S2O8

22. The width of the ring electrode is
much smaller than the circumferenceL and the separation
from the reference electrodew. Consequently, both the ra
dial variation across the width and the ring curvature can
omitted such that the potential on the electrode is pseu
one-dimensional. The electrode is originally in the pass
homogeneous state and a localized pulse of higher pote
is then introduced by a microprobe. The boundaries of
pulse are observed to evolve into fronts separating the ac
region within the pulse from the passive surrounding. T
fronts then expand until they meet on the other side of
ring such that the entire electrode is in the active state.

It is in the propagation of these fronts where front dyna
ics different from one-dimensional diffusion-reaction fron
are observed by Kirscher’s group. As seen in their simu
tions @4# shown in Figs. 1 and 2, when (w/L) is small, the
fronts propagate at constant speed around the ring as
active state replaces the passive one. The total current is
seen to drop linearly in time as seen in Fig. 2, reflecting
constancy of the speeds of the fronts. This is the expec
behavior for the front of a one-dimensional bistable reacti
diffusion system. However, when the reference electrod
moved further away, such that (w/L) is of unit order or
larger, the front and the current evolution clearly shows n
linear behavior in Figs. 1 and 2. The fronts seem to acce
ate across the ring such that the active state replaces
passive one in a rapid transition. Moreover, as shown
Fig. 1~d!, when (w/L) is much larger than unity, the puls
actually extinguishes as its fronts collapse into each ot
instead of expanding. The subsequent homogeneous ‘‘i
tion’’ to the active state is because the simulation was d
under conditions of a single active state~excitable! system
instead of a true bistable system. Nevertheless, the extinc
of the initial pulse is unmistakable and would also have
curred in a bistable system.

Accelerated fronts and extinction of a pulse are typica
associated with a two-dimensional reaction-diffusion syst
whose spatiotemporal dynamics is far richer than the o
dimensional case@5#. That the same phenomena can app
5196 © 1998 The American Physical Society
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57 5197FRONT INTERACTION ON A RING ELECTRODE
in a pseudo-one-dimensional system hence suggests
other complex dynamics are possible on the ring electro

The curious accelerated front dynamics has been at
uted to the ‘‘global coupling’’ effect representing high
coupling between different points on the ring electrode as
electrode separation increases@4#. The argument is that the
increased gap distorts equipotential lines between the e
trodes from a linear topology in a thin gap to fully curve
ones in a wide one. As a result, the potential gradient al
the ring is amplified in the latter case which, in turn, e
hances the flux of the higher potential to the lower-poten
passive region via the bulk electrolyte. In the limit
(w/L)!1, the flux through the electrolyte has been shown
produce a net diffusive flux along the electrode@4#. It can
hence be modeled as a pseudo-one-dimensional reac

FIG. 1. Comparison of the 2D and 1D theories: 2D simulat
@2#, 1D simulation. Coherent structure theory: the front evolutio
hat
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diffusion equation. It was believed that enhanced flux in
limit ( w/L)@1 cannot be modeled as one-dimensional d
fusion and hence the accelerated fronts are a t
dimensional effect.

We show here that both the accelerated front and pu
extinction phenomena can still exist for a one-dimensio
diffusion-reaction system in a periodic domain like the ri
electrode. As a result, while nontrivial dynamics are still po
sible, they are not as rich as a truly two-dimensional o
Both phenomena are due to long-range interaction of the
fronts through the bulk electrolyte, which can often be mo
eled as one-dimensional diffusive coupling even for (w/L)
of unit order. The accelerated front phenomenon is due b
to initial interaction across the pulse when it is narrow a
final-stage interaction around the ring when the pulse
wide. The extinction phenomenon, however, is only due
the former interaction.

II. EFFECTIVE ONE-DIMENSIONAL DIFFUSION
COEFFICIENT

We begin by neglecting the potential variation inr , the
ring curvature, and the finite circumference of the ring. T
electrolyte between the electrodes is confined to an infi
strip with boundary conditionsf50 at the reference elec
trode at the planez5w andf5V2u(x) at the planez50
corresponding to the outside surface of the double layer
the working electrode. The total applied voltage isV and
u(x) is the potential drop at the double layer. The poten
within the strip is governed by the two-dimensional Lapla
equation and we hence use the conformal map (j,h)
5(epx/w cospz/w,epx/w sinpz/w) to map the strip into the
half-planeh.0 with boundary conditionsf50 for j,0 and
f5V2u(x) for j.0 at the boundaryh50. Using the Pois-
son formula, one gets

]f

]z
~x,z!5E

2`

1`

G~p,z!@V2u~x1p!#dp

FIG. 2. Comparison of the 2D and 1D theories: 2D simulati
@2#, 1D simulation. Coherent structure theory: the total current
time.
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5198 57OLEKSIY ORLYCHENKO, YI YE, AND HSUEH-CHIA CHANG
or, breaking the integral by taking into account the period
ity of u(x), as

]f

]z
~x,z!5 (

k52`

k51` E
2L/2

1L/2

G~p1kL,z!@V2u~x1p!#dp,

~1!

wherek is a integer and the Green’s function is

G~p,z!5
1

p

epp/w@ tan2 pz/w2~12epp/w!2#

cos2 pz/w@ tan2 pz/w1~12epp/w!2#2 ,

~2!

which is singular as bothp andz approach zero,G(p,z)→
2p22 asz→0. This sharp singularity atp50 allows us to
estimate the flux at the electrode, which is directly prop
tional to ]f/]z at z50, by expanding the kernel in convo
lution ~1!. We hence expand aboutp50

u~x1p!5u~x!1
du

dx
p1

1

2

d2u

dx2 p21K ~3!

and assume thatu(x) is sufficiently smooth such that it
derivatives become successively smaller and the expan
converges nearp50. From contour integration, we can fin
the first few moments of the kernel@for the case (w/L)
→0, when only the term withk50 survives#:

lim
z→0

E
2`

1`

G~p,z!dp521/w, lim
z→0

E
2`

1`

pG~p,z!dp50,

lim
z→0

E
2`

1`

p2G~p,z!dp52
2w

3
.

As a result, provided the spatial gradient ofu is not ex-
cessively sharp, the surface flux in the original unscaled
ordinate system can be approximated by@for the case when
(w/L)→0#

]f

]zU
z50

52
V2u~x!

w
2D`

d2u

dx2 , ~4!

where the ‘‘effective diffusivity’’ in units of length is given
by D`5w/3, the ‘‘long-wave limit’’ obtained by Mazouz
and Krischer@4#.

This effective one-dimensional diffusivity applies whe
ever the domain ofp is sufficiently large andu(x) is suffi-
ciently smooth. The latter is trivially satisfied except duri
the initial transients when the imposed pulse has s
function boundaries. The former is valid only if the circum
ference is sufficiently large compared tow. To estimate how
finite circumference distorts our diffusivity, we again reta
the term withk50 in Eq. ~1! to obtain

D5D`S lim
z→0

E
2L/2

1L/2

p2G~p,z!dpY lim
z→0

E
2`

1`

p2G~p,z!dpD
~5!

and find thatD only deviates significantly fromD` if ( w/L)
is in excess of unity. AllkÞ0 terms are exponentially sma
because of the exp@2upu# dependence of the Green’s functio
-

-

on

o-

p-

~2! at 6`. Hence, only the correctedk50 term needs to be
included. The one-dimensional approximation~4! hence re-
mains valid@when corrected diffusion coefficient~5! is used#
even for (w/L) close to unity where the simulation of Ma
zous and Krischer in Figs. 1~b! and 1~c! clearly show front
acceleration. This phenomenon should hence be captur
with a one-dimensional diffusion-reaction equation. Our
timate ofD/D` from Eq.~4! yields 1.0, 0.99, 0.55, and 0.2
for (w/L)50.0477, 0.477, 1.5957, and 15.957 of Fig. 1. T
validity of long-wave expansion even for (w/L) of unit order
is due to the strongp22 singularity atp50 whenz tends to
zero. This renders Eq.~3! as a converging series even fo
u(x) with relatively high gradients. Moreover, the diffusivit
actually decreases as one fixesw and decreasesL ~increase
w/L!, which is inconsistent with the speculation that glob
coupling increases with decreasingL.

III. ONE-DIMENSIONAL REACTION-DIFFUSION
EQUATION

To scrutinize the accelerating front phenomenon m
closely, we include Eq.~4! with the general diffusivity of Eq.
~5! in a charge balance across the parallel circuit of the n
Ohmic reaction resistor and the double-layer capacitance

Cut52r ~u!1s8fz~z50!,

wheres8 is a conductivity in the bulk electrolyte andC is the
double-layer capacitance. The following transformatio
(x,z)→(Lx/2p,wz), t→(CRT/nF)r 0t, u→(RT/nF)u, V
→(RT/nF)V, s→(RT/r 0nF)s8, and i 5r /(r 0nF) yield

ut52 i ~u!1~s/w!@V2u1Duxx# ~6!

wherer 0 is a typical reaction rate,n is the charge number o
the ion,F is the Faraday constant, andD5Dw(2p/L).

The dependence of the S2O8
22 reduction reaction on the

potential has been fitted empirically@4# to yield a reaction
current of i 50.0365u3117.23u212019.6u. The reported
value of the third coefficient 2019.6 by Mazouz and Krisch
is actually 2039.6 but such a coefficient yields an excita
system instead of bistability and we have altered it to 201
here. The initial pulse width for simulation is always fixed
0.2 in the scaledx coordinate in Eq.~6!. In the simulations of
Mazouz and Krischer of the full two-dimensional proble
shown in Fig. 1 and 2,s/w andV are held constant at 10 an
2350, respectively. We have simulated Eq.~6! with the
same coefficients and, as shown in the Figs. 1 and 2, h
obtained front profiles and current evolution curves that
quantitatively consistent with the two-dimensional simu
tion. The only error arises during the initial phase when
pulse has a large gradient. Our estimated diffusivitiesD are
probably too low during this interval. Fortunately, this tra
sient for front formation is rather rapid and does not affe
the later front acceleration dynamics.

Sinces/w is constant during these simulations, we no
that this does not correspond to real experimental conditi
wherew is varied and, therefore,s/w cannot be constant. I
one envisions a fictional experiment where the ring circu
ferenceL is varied whilew is constant, then the simulation
in Fig. 1 correspond to a different initial width with Fig. 1~a!
having a larger width. This suggests that the acceleratio
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57 5199FRONT INTERACTION ON A RING ELECTRODE
not present in that figure not because the diffusivity is sm
~it is, in fact, the largest possible! but because the initia
width is too large for front interaction to take place. In th
actual experiment whenL is fixed and w is varied, the
bistable system yields an excitable system with a unique
mogeneous state at largew/L and the evolution should re
semble Fig. 1~d!. However, for intermediate values ofw/L,
the degree of front acceleration is determined not by glo
coupling but by the width of the reaction front relative to t
initial and the final front separation. The front width is then
complex function ofw/L and it is not clear that acceleratio
always increases withw/L.

To demonstrate this, we rewrite Eq.~6! as a one-
parameter diffusion-reaction system

ut5ujj2u~u21!~u1a!, ~7!

where t5ta(s12s2)2, j5x(a(s22s1)/D)1/2, and
a50.0365. For the standard conditions in Fig. 1,si5
(2257.83,2212.47,21.75) are the three roots of the poly
nomial i (u)1(s/w)(V2u). Hence, the key parametera is
(s32s2)/(s22s1)54.645 for the specified conditions. Th
circumference is now of length 2p(a(s22s1)/D)1/2. Since
all the conditions in Fig. 1 correspond to the same value
a, the only change is in the circumference length. Front
teraction is hence expected whenever the front width, wh
has been scaled to unity here, is smaller than 2p(a(s2
2s1)/D)1/2. For w/L less than unity, this corresponds
0.74(L/w).1, which is always satisfied. Even atw/L
51.5957 of casec, the condition is just barely violated an
one may still be able to describe the acceleration rate thro
front interaction.

IV. REACTION FRONT AND SPECTRUM

The two front solution to Eq.~7! can be readily obtained
by inspection,

u65 1
2 $12a6~11a!tanh@~11a!~j2c6t!/2A2#%,

~8!

with speedc656(a21)/A2.
Transforming Eq.~7! into a moving coordinate with the

speedc* of a particular frontu* and linearizing about tha
front, one obtains the disturbance equation]n/]t5Ln,
where L5]2/]j21c* ]/]j2e and e53u

*
2 12(a21)u*

2a. Perturbation about the constant-speed front, such as
observed acceleration, is determined by the spectrum oL.
This spectrum contains both discrete and essential spectr@5#
the corresponding eigenfunctions of which approach z
and bounded oscillations, respectively, at the two infiniti
Judging from the simulations, the front is stable and b
spectra lie in the left half of the complex plane. There
however, a neutral mode that arises from the translatio
symmetry—Eq.~7! in the moving coordinate is invariant t
j→j1j0 and translations of the fronts~8! are still front
solutions. A simple differentiation of Eq.~7! in the moving
frame shows thatL (du* /dj)50 and the eigenfunction o
this discrete neutral mode isdu* /dj.

The adjoint eigenvalue problem defined byL15]2/]j2

2c* ]/]j2e also has a neutral discrete mode with eige
function w* . Hence, if we expand the disturbance ofw in
ll

o-

al

f
-
h

gh

he

ro
.
h
,
al

-

du* /dj, the coefficient of expansion is (w,w* ) if w* is
normalized such that (w* ,du* /dj)51 and the inner prod-
uct is defined as (f ,g)5* f gdj in the moving frame. Using
a shooting scheme described in@6#, we have constructed the
adjoint eigenfunctionw* . For the standard conditions of
a54.645, the computed neutral eigenfunctions are shown
Fig. 3. The most pertinent parts of this eigenfunction are
decay rates toward the active and passive parts of the fro
Using the forward-stepping front (u2) located atj50 as a
reference, these can be represented as

lim
j→1`

w25d1e2A2aj, lim
j→2`

w25d2eA2j.

Due to obvious symmetries betweenu6 , the adjoint
eigenfunction foru1 would simply be the mirror image of
u2 . We depict our computedd ~d15d252d within nu-
merical accuracy! in Fig. 4.

FIG. 3. Solid line, foward stepping frontu2 ; dashed line, neu-
tral modedu2 /dj; dash-dot line, adjoint eigenfunctionw2 .

FIG. 4. Dependence of front interaction parameterd on the sys-
tem parametera.
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V. COHERENT STRUCTURE THEORY

Since the dominant neutral mode corresponds to a tr
lation, when two fronts are placed sufficiently close that th
feel the presence of each other and not too close to des
the front structure, the resulting interaction would cause b
fronts to translate. Consider the initial interaction imme
ately after the fronts are established, we seek the interac
force on each front at any given moment in time. Let the l
front u2 be located atj50 at this moment. Any interaction
would translate this front to a new positionj2(t) and the
translation is simplyu2„j2j2(t)…. An expansion for small
j2(t) yieldsu2;u2(j)2j2(t)du2 /dj and we see the co
efficient of the neutral eigenfunction has a simple physi
interpretation—the position of the front. Similarly, the rig
front situated at the distanced to the right of u2 can be
written asu1;u1(j)2j1(t)du1 /dj.

At any instance in time, the entire pulse can be written

u;u2„j2j2~ t !…1u1„j2j1~ t !…1a.

Upon substituting this expression into Eq.~6!, one obtains

2 j̇1u18 ~j2j1!2 j̇2u28 ~j2j2!

5c1@u28 ~j2j2!2u18 ~j2j1!#2 f 1 ,

where

f 1~j!5@u1~j2j1!1a#@u2~j2j2!1a#@3u1~j2j2!

13u2~j2j2!22a22#.

Taking inner product with respect to the adjointw6 to
isolate each front, one obtains two equations forj̇1 andj̇2 .
Subtracting the two equations, a single evolution equa
for d results:

ḋ5g1~d,a!5 j̇12 j̇252c12
2~ f 1 ,w2!

12@u18 ~j2d!,w2#
.

~9!

FIG. 5. Dependence of critical distancedc on the parameter o
systema.
s-
y
oy
th
-
on
t

l

s

n

For long-range interaction, the intervals for inner produ
involve overlapping exponential terms of the form

u1~j!;2a1~11a!exp$2~11a!j/A2%,

u2~j!;2a1~11a!exp$2~11a!~d2j!/A2%, and f ;

2~218a!~11a!2 exp$2~11a!d/A2%.

One then obtains

ḋ;2c12~4d/A2a!~114a!~11a!2e2~11a!d/A2 ~10!

for d@1.
The constant term 2c1 corresponds to two noninteractin

fronts that propagate in opposite direction while the exp
nentially decaying second term represents the initial attr
tive interaction between the two fronts. Front acceleration
actually due to an attractive front interaction that preve
the fronts from moving at their normal speeds.

At the end of the translation when the pulse width a
proaches the ring circumference, the fronts interact now
the other side and a similar analysis yields

ḋ;2c11~4d/A2!~41a!~11a!2e2~11a!~L2d!/A2,
~11!

whereL is the rescaled circumference of the ring. The int
action is again attractive but now the fronts accelerate tow
each other, instead of being bound during the initial attr
tive interaction.

VI. INTERACTION DYNAMICS AND CRITICAL PULSE
WIDTH

In Figs. 1 and 2 we compare the front acceleration d
namics predicted by Eqs.~10! and ~11! to those from the
initial two-dimensional simulations of Mazouz and Krish
and one-dimensional simulation using Eq.~6!. Except for
cased when the front width is much larger then the circum

FIG. 6. 1D numerical simulations for the casea54.5645,da

51.01dc , anddb50.99dc (dc50.83).
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57 5201FRONT INTERACTION ON A RING ELECTRODE
ference and hence the fronts are never established, the si
coherent structure theory yields excellent agreement. Th
is almost no interaction for casea, the initial and final inter-
actions governed by Eqs.~10! and ~11!, respectively, are
clearly evident in caseb while they tend to overlap in casec.
The theory also predicts the critical widthdc for the initial
pulse defined byg1(dc ,a)50 shown in Fig. 5. Pulses with
initial widths smaller thandc would extinguish instead o
expanding. This is clearly corroborated by the on
dimensional simulation shown in Fig. 6.

Although the accelerated front dynamics and extinct
phenomena are shown to be driven mostly by o
dimensional front interaction, its dynamics can still be ve
r,

J.

ys
ple
re

-

n
-

rich if there are multiple pulses@7# and if the exponential
tails can be made to oscillate@6#. While their spatiotempora
dynamics are not as rich as truly two-dimensional problem
the statistics of multifront coalescence has been studied t
retically @7# and ring electrode experiments can corrobor
theoretical predictions.
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